2020/01/04 Netty Websocket Long Connection

http://gee.cs.oswego.edu
Scalable IO in Java
Doug Lea
State University of New York at Oswego
dl@cs.oswego.edu
http://gee.cs.oswego.edu
http://gee.cs.oswego.edu
Outline
“ Scalable network services
“ Event-driven processing
“ Reactor pattern
Basic version
Multithreaded versions
Other variants
“ Walkthrough of java.nio nonblocking IO APIs
http://gee.cs.oswego.edu
Network Services
“ Web services, Distributed Objects, etc
“ Most have same basic structure:
Read request
Decode request
Process service
Encode reply
Send reply
“ But differ in nature and cost of each step
XML parsing, File transfer, Web page
generation, computational services, …
http://gee.cs.oswego.edu
Classic Service Designs
client
client
client
Server
read decode compute encode send
read decode compute encode send
handler
handler
read decode compute encode send
handler
Each handler may be started in its own thread
http://gee.cs.oswego.edu
Classic ServerSocket Loop
class Server implements Runnable {
public void run() {
try {
ServerSocket ss = new ServerSocket(PORT);
while (!Thread.interrupted())
new Thread(new Handler(ss.accept())).start();
// or, single-threaded, or a thread pool
} catch (IOException ex) { // }
}
static class Handler implements Runnable {
final Socket socket;
Handler(Socket s) { socket = s; }
public void run() {
try {
byte[] input = new byte[MAX_INPUT];
socket.getInputStream().read(input);
byte[] output = process(input);
socket.getOutputStream().write(output);
} catch (IOException ex) { // }
}
private byte[] process(byte[] cmd) { // }
}
}
Note: most exception handling elided from code examples
http://gee.cs.oswego.edu
Scalability Goals
“ Graceful degradation under increasing load
(more clients)
“ Continuous improvement with increasing
resources (CPU, memory, disk, bandwidth)
“ Also meet availability and performance goals
Short latencies
Meeting peak demand
Tunable quality of service
“ Divide-and-conquer is usually the best
approach for achieving any scalability goal
http://gee.cs.oswego.edu
Divide and Conquer
“ Divide processing into small tasks
Each task performs an action without blocking
“ Execute each task when it is enabled
Here, an IO event usually serves as trigger
“ Basic mechanisms supported in java.nio
Non-blocking reads and writes
Dispatch tasks associated with sensed IO events
“ Endless variation possible
A family of event-driven designs
read decode compute encode send
handler
http://gee.cs.oswego.edu
Event-driven Designs
“ Usually more efficient than alternatives
Fewer resources
“ Don’t usually need a thread per client
Less overhead
“ Less context switching, often less locking
But dispatching can be slower
“ Must manually bind actions to events
“ Usually harder to program
Must break up into simple non-blocking actions
“ Similar to GUI event-driven actions
“ Cannot eliminate all blocking: GC, page faults, etc
Must keep track of logical state of service
http://gee.cs.oswego.edu
Background: Events in AWT
Event
Event
Button
public void actionPerformed(…) {
doSomething();
}
ActionListener
AWT thread
AWT Event Queue
Event-driven IO uses similar ideas but in different designs

click!
http://gee.cs.oswego.edu
Reactor Pattern
“ Reactor responds to IO events by dispatching
the appropriate handler
Similar to AWT thread
“ Handlers perform non-blocking actions
Similar to AWT ActionListeners
“ Manage by binding handlers to events
Similar to AWT addActionListener
“ See Schmidt et al, Pattern-Oriented Software
Architecture, Volume 2 (POSA2)
Also Richard Stevens’s networking books, Matt
Welsh’s SEDA framework, etc
http://gee.cs.oswego.edu
Basic Reactor Design
client
client
client
read decode compute encode send
read decode compute encode send
read decode compute encode send
Reactor
acceptor
dispatch
Single threaded version
http://gee.cs.oswego.edu
java.nio Support
“ Channels
Connections to files, sockets etc that support
non-blocking reads
“ Buffers
Array-like objects that can be directly read or
written by Channels
“ Selectors
Tell which of a set of Channels have IO events
“ SelectionKeys
Maintain IO event status and bindings
http://gee.cs.oswego.edu
Reactor 1: Setup
class Reactor implements Runnable {
final Selector selector;
final ServerSocketChannel serverSocket;
Reactor(int port) throws IOException {
selector = Selector.open();
serverSocket = ServerSocketChannel.open();
serverSocket.socket().bind(
new InetSocketAddress(port));
serverSocket.configureBlocking(false);
SelectionKey sk =
serverSocket.register(selector,
SelectionKey.OP_ACCEPT);
sk.attach(new Acceptor());
}
/
Alternatively, use explicit SPI provider:
SelectorProvider p = SelectorProvider.provider();
selector = p.openSelector();
serverSocket = p.openServerSocketChannel();
/
http://gee.cs.oswego.edu
Reactor 2: Dispatch Loop
// class Reactor continued
public void run() { // normally in a new
Thread
try {
while (!Thread.interrupted()) {
selector.select();
Set selected = selector.selectedKeys();
Iterator it = selected.iterator();
while (it.hasNext())
dispatch((SelectionKey)(it.next());
selected.clear();
}
} catch (IOException ex) { // }
}
void dispatch(SelectionKey k) {
Runnable r = (Runnable)(k.attachment());
if (r != null)
r.run();
}
http://gee.cs.oswego.edu
Reactor 3: Acceptor
// class Reactor continued
class Acceptor implements Runnable { // inner
public void run() {
try {
SocketChannel c = serverSocket.accept();
if (c != null)
new Handler(selector, c);
}
catch(IOException ex) { // }
}
}
}
client
client
client
read decode compute encode send
read decode compute encode send
read decode compute encode send
Reactor
acceptor
dispatch
http://gee.cs.oswego.edu
Reactor 4: Handler setup
final class Handler implements Runnable {
final SocketChannel socket;
final SelectionKey sk;
ByteBuffer input = ByteBuffer.allocate(MAXIN);
ByteBuffer output = ByteBuffer.allocate(MAXOUT);
static final int READING = 0, SENDING = 1;
int state = READING;
Handler(Selector sel, SocketChannel c)
throws IOException {
socket = c; c.configureBlocking(false);
// Optionally try first read now
sk = socket.register(sel, 0);
sk.attach(this);
sk.interestOps(SelectionKey.OP_READ);
sel.wakeup();
}
boolean inputIsComplete() { // }
boolean outputIsComplete() { // }
void process() { // }
http://gee.cs.oswego.edu
Reactor 5: Request handling
// class Handler continued
public void run() {
try {
if (state == READING) read();
else if (state == SENDING) send();
} catch (IOException ex) { // }
}
void read() throws IOException {
socket.read(input);
if (inputIsComplete()) {
process();
state = SENDING;
// Normally also do first write now
sk.interestOps(SelectionKey.OP_WRITE);
}
}
void send() throws IOException {
socket.write(output);
if (outputIsComplete()) sk.cancel();
}
}
http://gee.cs.oswego.edu
Per-State Handlers
“ A simple use of GoF State-Object pattern
Rebind appropriate handler as attachment
class Handler { // …
public void run() { // initial state is reader
socket.read(input);
if (inputIsComplete()) {
process();
sk.attach(new Sender());
sk.interest(SelectionKey.OP_WRITE);
sk.selector().wakeup();
}
}
class Sender implements Runnable {
public void run(){ // …
socket.write(output);
if (outputIsComplete()) sk.cancel();
}
}
}
http://gee.cs.oswego.edu
Multithreaded Designs
“ Strategically add threads for scalability
Mainly applicable to multiprocessors
“ Worker Threads
Reactors should quickly trigger handlers
“ Handler processing slows down Reactor
Offload non-IO processing to other threads
“ Multiple Reactor Threads
Reactor threads can saturate doing IO
Distribute load to other reactors
“ Load-balance to match CPU and IO rates
http://gee.cs.oswego.edu
Worker Threads
“ Offload non-IO processing to speed up
Reactor thread
Similar to POSA2 Proactor designs
“ Simpler than reworking compute-bound
processing into event-driven form
Should still be pure nonblocking computation
“ Enough processing to outweigh overhead
“ But harder to overlap processing with IO
Best when can first read all input into a buffer
“ Use thread pool so can tune and control
Normally need many fewer threads than clients
http://gee.cs.oswego.edu
Worker Thread Pools
client
client
client
read
decode compute encode
send
read
decode compute encode
send
read
decode compute encode
send
Reactor
Thread
Pool
worker
threads
acceptor
queued tasks
http://gee.cs.oswego.edu
Handler with Thread Pool
class Handler implements Runnable {
// uses util.concurrent thread pool
static PooledExecutor pool = new PooledExecutor(…);
static final int PROCESSING = 3;
// …
synchronized void read() { // …
socket.read(input);
if (inputIsComplete()) {
state = PROCESSING;
pool.execute(new Processer());
}
}
synchronized void processAndHandOff() {
process();
state = SENDING; // or rebind attachment
sk.interest(SelectionKey.OP_WRITE);
}
class Processer implements Runnable {
public void run() { processAndHandOff(); }
}
}
http://gee.cs.oswego.edu
Coordinating Tasks
“ Handoffs
Each task enables, triggers, or calls next one
Usually fastest but can be brittle
“ Callbacks to per-handler dispatcher
Sets state, attachment, etc
A variant of GoF Mediator pattern
“ Queues
For example, passing buffers across stages
“ Futures
When each task produces a result
Coordination layered on top of join or wait/notify
http://gee.cs.oswego.edu
Using PooledExecutor
“ A tunable worker thread pool
“ Main method execute(Runnable r)
“ Controls for:
The kind of task queue (any Channel)
Maximum number of threads
Minimum number of threads
“Warm” versus on-demand threads
Keep-alive interval until idle threads die
“ to be later replaced by new ones if necessary
Saturation policy
“ block, drop, producer-runs, etc
http://gee.cs.oswego.edu
Multiple Reactor Threads
“ Using Reactor Pools
Use to match CPU and IO rates
Static or dynamic construction
“ Each with own Selector, Thread, dispatch loop
Main acceptor distributes to other reactors
Selector[] selectors; // also create threads
int next = 0;
class Acceptor { // …
public synchronized void run() { …
Socket connection = serverSocket.accept();
if (connection != null)
new Handler(selectors[next], connection);
if (++next == selectors.length) next = 0;
}
}
http://gee.cs.oswego.edu
Using Multiple Reactors
client
client
client
read
decode compute encode
send
read
decode compute encode
send
read
decode compute encode
send
mainReactor
Thread
Pool
worker
threads
acceptor
queued tasks
subReactor
http://gee.cs.oswego.edu
Using other java.nio features
“ Multiple Selectors per Reactor
To bind different handlers to different IO events
May need careful synchronization to coordinate
“ File transfer
Automated file-to-net or net-to-file copying
“ Memory-mapped files
Access files via buffers
“ Direct buffers
Can sometimes achieve zero-copy transfer
But have setup and finalization overhead
Best for applications with long-lived connections
http://gee.cs.oswego.edu
Connection-Based Extensions
“ Instead of a single service request,
Client connects
Client sends a series of messages/requests
Client disconnects
“ Examples
Databases and Transaction monitors
Multi-participant games, chat, etc
“ Can extend basic network service patterns
Handle many relatively long-lived clients
Track client and session state (including drops)
Distribute services across multiple hosts
http://gee.cs.oswego.edu
API Walkthrough
“ Buffer
“ ByteBuffer
(CharBuffer, LongBuffer, etc not shown.)
“ Channel
“ SelectableChannel
“ SocketChannel
“ ServerSocketChannel
“ FileChannel
“ Selector
“ SelectionKey
http://gee.cs.oswego.edu
Buffer
abstract class Buffer {
int capacity();
int position();
Buffer position(int newPosition);
int limit();
Buffer limit(int newLimit);
Buffer mark();
Buffer reset();
Buffer clear();
Buffer flip();
Buffer rewind();
int remaining();
boolean hasRemaining();
boolean isReadOnly();
}
position limit capacity
mark
a b c
http://gee.cs.oswego.edu
ByteBuffer (1)
abstract class ByteBuffer extends Buffer {
static ByteBuffer allocateDirect(int capacity);
static ByteBuffer allocate(int capacity);
static ByteBuffer wrap(byte[] src, int offset, int len);
static ByteBuffer wrap(byte[] src);
boolean isDirect();
ByteOrder order();
ByteBuffer order(ByteOrder bo);
ByteBuffer slice();
ByteBuffer duplicate();
ByteBuffer compact();
ByteBuffer asReadOnlyBuffer();
byte get();
byte get(int index);
ByteBuffer get(byte[] dst, int offset, int length);
ByteBuffer get(byte[] dst);
ByteBuffer put(byte b);
ByteBuffer put(int index, byte b);
ByteBuffer put(byte[] src, int offset, int length);
ByteBuffer put(ByteBuffer src);
ByteBuffer put(byte[] src);
char getChar();
char getChar(int index);
ByteBuffer putChar(char value);
ByteBuffer putChar(int index, char value);
CharBuffer asCharBuffer();
http://gee.cs.oswego.edu
ByteBuffer (2)
short getShort();
short getShort(int index);
ByteBuffer putShort(short value);
ByteBuffer putShort(int index, short value);
ShortBuffer asShortBuffer();
int getInt();
int getInt(int index);
ByteBuffer putInt(int value);
ByteBuffer putInt(int index, int value);
IntBuffer asIntBuffer();
long getLong();
long getLong(int index);
ByteBuffer putLong(long value);
ByteBuffer putLong(int index, long value);
LongBuffer asLongBuffer();
float getFloat();
float getFloat(int index);
ByteBuffer putFloat(float value);
ByteBuffer putFloat(int index, float value);
FloatBuffer asFloatBuffer();
double getDouble();
double getDouble(int index);
ByteBuffer putDouble(double value);
ByteBuffer putDouble(int index, double value);
DoubleBuffer asDoubleBuffer();
}
http://gee.cs.oswego.edu
Channel
interface Channel {
boolean isOpen();
void close() throws IOException;
}
interface ReadableByteChannel extends Channel {
int read(ByteBuffer dst) throws IOException;
}
interface WritableByteChannel extends Channel {
int write(ByteBuffer src) throws IOException;
}
interface ScatteringByteChannel extends ReadableByteChannel {
int read(ByteBuffer[] dsts, int offset, int length)
throws IOException;
int read(ByteBuffer[] dsts) throws IOException;
}
interface GatheringByteChannel extends WritableByteChannel {
int write(ByteBuffer[] srcs, int offset, int length)
throws IOException;
int write(ByteBuffer[] srcs) throws IOException;
}
http://gee.cs.oswego.edu
SelectableChannel

abstract class SelectableChannel implements Channel {
int validOps();
boolean isRegistered();
SelectionKey keyFor(Selector sel);
SelectionKey register(Selector sel, int ops)
throws ClosedChannelException;
void configureBlocking(boolean block)
throws IOException;
boolean isBlocking();
Object blockingLock();
}
http://gee.cs.oswego.edu
SocketChannel
abstract class SocketChannel implements ByteChannel … {
static SocketChannel open() throws IOException;
Socket socket();
int validOps();
boolean isConnected();
boolean isConnectionPending();
boolean isInputOpen();
boolean isOutputOpen();
boolean connect(SocketAddress remote) throws IOException;
boolean finishConnect() throws IOException;
void shutdownInput() throws IOException;
void shutdownOutput() throws IOException;
int read(ByteBuffer dst) throws IOException;
int read(ByteBuffer[] dsts, int offset, int length)
throws IOException;
int read(ByteBuffer[] dsts) throws IOException;
int write(ByteBuffer src) throws IOException;
int write(ByteBuffer[] srcs, int offset, int length)
throws IOException;
int write(ByteBuffer[] srcs) throws IOException;
}
http://gee.cs.oswego.edu
ServerSocketChannel

abstract class ServerSocketChannel extends … {
static ServerSocketChannel open() throws IOException;
int validOps();
ServerSocket socket();
SocketChannel accept() throws IOException;
}
http://gee.cs.oswego.edu
FileChannel
abstract class FileChannel implements … {
int read(ByteBuffer dst);
int read(ByteBuffer dst, long position);
int read(ByteBuffer[] dsts, int offset, int length);
int read(ByteBuffer[] dsts);
int write(ByteBuffer src);
int write(ByteBuffer src, long position);
int write(ByteBuffer[] srcs, int offset, int length);
int write(ByteBuffer[] srcs);
long position();
void position(long newPosition);
long size();
void truncate(long size);
void force(boolean flushMetaDataToo);
int transferTo(long position, int count,
WritableByteChannel dst);
int transferFrom(ReadableByteChannel src,
long position, int count);
FileLock lock(long position, long size, boolean shared);
FileLock lock();
FileLock tryLock(long pos, long size, boolean shared);
FileLock tryLock();
static final int MAP_RO, MAP_RW, MAP_COW;
MappedByteBuffer map(int mode, long position, int size);
}
NOTE: ALL methods throw IOException
http://gee.cs.oswego.edu
Selector
abstract class Selector {
static Selector open() throws IOException;
Set keys();
Set selectedKeys();
int selectNow() throws IOException;
int select(long timeout) throws IOException;
int select() throws IOException;
void wakeup();
void close() throws IOException;
}
http://gee.cs.oswego.edu
SelectionKey
abstract class SelectionKey {
static final int OP_READ, OP_WRITE,
OP_CONNECT, OP_ACCEPT;
SelectableChannel channel();
Selector selector();
boolean isValid();
void cancel();
int interestOps();
void interestOps(int ops);
int readyOps();
boolean isReadable();
boolean isWritable();
boolean isConnectable();
boolean isAcceptable();
Object attach(Object ob);
Object attachment();
}